сайт для аспирантов и молодых учёных, врачей-специалистов и организаторов, студентов и преподавателей

Статистика - это очень просто!

теория
калькуляторы
форум
литература
алгоритмы
презентации
задания
авторы
Заказать статобработку
Курсы по статанализу

Общие вопросы медицинской статистики

Медицинская статистика Базы данных в MS Excel Определение размера выборки Какой метод статанализа выбрать? Медицинская демография

Статистические величины

Абсолютные величины Относительные величины Графические изображения Вариационные ряды Стандартизация Динамические ряды

Сравнение количественных показателей

t-критерий Стьюдента U-критерий Манна-Уитни Критерий Уилкоксона Парный t-критерий Стьюдента Q-критерий Розенбаума G-критерий знаков Однофакторный дисперсионный анализ (ANOVA) Критерий Фридмана Критерий Краскелла-Уоллиса

Сравнение относительных показателей

Критерий χ2 Пирсона Относительный риск Отношение шансов Точный критерий Фишера Q-критерий Кохрена Тест Мак-Немара

Методы оценки связи

Корреляционный анализ (общие сведения) Критерий корреляции Пирсона Парная линейная регрессия Критерий Спирмена Коэффициент Фехнера Коэффициент корреляции Кендалла Коэффициент конкордации Кендалла

Методы оценки распределения

F-критерий Фишера Критерий Колмогорова-Смирнова Метод Шапиро-Уилка

КАКОЙ МЕТОД ВЫБРАТЬ ДЛЯ СТАТИСТИЧЕСКОГО АНАЛИЗА?

После того, как собраны все данные, перед каждым исследователем встает вопрос выбора наиболее подходящего способа статистической обработки. И это неудивительно: современная статистика объединяет огромное количество всевозможных критериев и методов. Все они имеют свои особенности, могут подходить или не подходить для двух, казалось бы, схожих ситуаций. В этой статье мы постараемся систематизировать все основные, наиболее распространенные методы статистического анализа по их назначению.

Однако вначале несколько слов о том, какие бывают статистические данные, так как именно от этого зависит выбор наиболее подходящего метода анализа.

Шкала измерения

При проведении исследования у каждой единицы наблюдения определяются значения различных признаков. В зависимости от того, по какой шкале они измеряются, все признаки делятся на количественные и качественные. Качественные показатели в исследованиях распределяются по так называемой номинальной шкале. Кроме того, показатели могут быть представлены по ранговой шкале.

Например, проводится сравнение показателей сердечной деятельности у спортсменов и лиц, ведущих малоподвижный образ жизни.

При этом у исследуемых определялись следующие признаки:

  • пол - является номинальным показателем, принимающим два значения - мужской или женский.
  • возраст - количественный показатель,
  • занятия спортом - номинальный показатель, принимающий два значения: занимается или не занимается,
  • частота сердечных сокращений - количественный показатель,
  • систолическое артериальное давление - количественный показатель,
  • наличие жалоб на боли в грудной клетке - является качественным показателем, значения которого могут быть определены как по номинальной (есть жалобы - нет жалоб), так и по ранговой шкале в зависимости от частоты (например, если боль возникает несколько раз в день - показателю присваивается ранг 3, несколько раз в месяц - ранг 2, несколько раз в год - ранг 1, при отсутствии жалоб на боли в грудной клетке - ставится ранг 0).

Количество сопоставляемых совокупностей

Следующий вопрос, который необходимо решить для выбора статистического метода, заключается в количестве совокупностей, сопоставляемых в рамках исследования.

Важным также является вопрос нормальности распределения изучаемых совокупностей. От этого зависит, можно ли применять методы параметрического анализа или только непараметрического. Условиями, которые должны соблюдаться в нормально распределенных совокупностях, являются:

  1. максимальная близость или равенство значений средней арифметической, моды и медианы;
  2. соблюдение правила "трёх сигм" (в интервале М±1σ находятся не менее 68,3% вариант, в интервале М±2σ - не менее 95,5% вариант, в интервале М±3σ находятся не менее 99,7% вариант;
  3. показатели измерены в количественной шкале;
  4. положительные результаты проверки на нормальность распределения при помощи специальных критериев - Колмогорова-Смирнова или Шапиро-Уилка.

После определения всех указанных нами признаков изучаемых совокупностей, предлагаем воспользоваться следующей таблицей для выбора наиболее оптимального метода статистического анализа.

Метод Шкала измерения показателей Количество сравниваемых совокупностей Цель обработки Распределение данных
t-критерий Стьюдента количественная 2 сравнение несвязанных совокупностей нормальное
t-критерий Стьюдента с поправкой Бонферрони количественная 3 и более сравнение несвязанных совокупностей нормальное
Парный t-критерий Стьюдента количественная 2 сравнение связанных совокупностей нормальное
Однофакторный дисперсионный анализ (ANOVA) количественная 3 и более сравнение несвязанных совокупностей нормальное
Однофакторный дисперсионный анализ (ANOVA) с повторными измерениями количественная 3 и более сравнение связанных совокупностей нормальное
U-критерий Манна-Уитни количественная, ранговая 2 сравнение несвязанных совокупностей любое
Q-критерий Розенбаума количественная, ранговая 2 сравнение несвязанных совокупностей любое
Критерий Краскелла-Уоллиса количественная 3 и более сравнение несвязанных совокупностей любое
Критерий Уилкоксона количественная, ранговая 2 сравнение связанных совокупностей любое
G-критерий знаков количественная, ранговая 2 сравнение связанных совокупностей любое
Критерий Фридмана количественная, ранговая 3 и более сравнение связанных совокупностей любое
Критерий χ2 Пирсона номинальная 2 и более сравнение несвязанных совокупностей любое
Точный критерий Фишера номинальная 2 сравнение несвязанных совокупностей любое
Тест Мак-Немара номинальная 2 сравнение связанных совокупностей любое
Q-критерий Кохрена номинальная 3 и более сравнение связанных совокупностей любое
Относительный риск (Risk Ratio, RR) номинальная 2 сравнение несвязанных совокупностей в когортных исследованиях любое
Отношение шансов (Odds Ratio, OR) номинальная 2 сравнение несвязанных совокупностей в исследованиях по типу «случай-контроль» любое
Коэффициент корреляции Пирсона количественная 2 ряда измерений выявление связи между признаками нормальное
Коэффициент ранговой корреляции Спирмена количественная, ранговая 2 ряда измерений выявление связи между признаками любое
Коэффициент корреляции Кендалла количественная, ранговая 2 ряда измерений выявление связи между признаками любое
Коэффициент конкордации Кендалла количественная, ранговая 3 и более рядов измерений выявление связи между признаками любое
Расчет средних величин (M) и средних ошибок (m) количественная 1 описательная статистика любое
Расчет медиан (Ме) и перцентилей (квартилей) ранговая 1 описательная статистика любое
Расчет относительных величин (Р) и средних ошибок (m) номинальная 1 описательная статистика любое
Критерий Шапиро-Уилка количественная 1 анализ распределения любое
Критерий Колмогорова-Смирнова количественная 1 анализ распределения любое
Критерий ω2 Смирнова-Крамера-фон Мизеса количественная 1 анализ распределения любое
Метод Каплана-Мейера любая 1 анализ выживаемости любое
Модель пропорциональных рисков Кокса любая 1 анализ выживаемости любое


©Д.Марапов,2013
damirov@list.ru
Яндекс.Метрика Рейтинг@Mail.ru